

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

EVM Smart Contract Packaging Specification

[image: _images/Lobby.svg]Join the chat at https://gitter.im/ethpm/Lobby [https://gitter.im/ethpm/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Ethereum Packaging Specification

Specification

	Release Lock File

Definitions

The following types are used within this specification.

Contract Name

A string matching the regular expression [_a-zA-Z][_a-zA-Z0-9]*

Package Name

A string matching the regular expression [a-zA-Z][-_a-zA-Z0-9]*

IPFS URI

An URI in the format ipfs://<multihash>[/<path>]

Chain Definition via BIP122 URI

An URI in the format blockchain://<chain_id>/block/<block_hash>

	chain_id is the unprefixed genesis hash for the chain.

	block_hash is the hash of a block on the chain.

A chain is considered to match a chain definition if the the genesis block hash
matches the chain_id and the block defined by block_hash can be found on
that chain. It is possible for multiple chains to match a single URI, in which
case all chains are considered valid matches

Resources

	https://pad.riseup.net/p/7x3G896a3NLA

	https://medium.com/@sdboyer/so-you-want-to-write-a-package-manager-4ae9c17d9527

Use Cases

The following use cases were considered during the creation of this
specification.

	owned: A package which contains contracts which are not meant to be used by themselves but rather as base contracts to provide functionality to other contracts through inheritance.

	transferable: A package which has a single dependency.

	standard-token: A package which contains a reusable contract.

	safe-math-lib: A package which contains deployed instance of one of the package contracts.

	piper-coin: A package which contains a deployed instance of a reusable contract from a dependency.

	escrow: A package which contains a deployed instance of a local contract which is linked against a deployed instance of a local library.

	wallet: A package with a deployed instance of a local contract which is linked against a deployed instance of a library from a dependency.

Each use case builds incrementally on the previous one.

 Stand Alone Package with an Inheritable Contract

For the first example we’ll look at a package which only contains contracts
which serve as base contracts for other contracts to inherit from but do not
provide any real useful functionality on their own. The common owned pattern
is a example for this use case.

pragma solidity ^0.4.0;

contract owned {
 address owner;

 function owned() {
 owner = msg.sender;
 }

 modifier onlyowner { if (msg.sender != owner) throw; _; }
}

For this example we will assume this file is located in the solidity source file ./contracts/owned.sol

The owned package contains a single solidity source source file which is
intended to be used as a base contract for other contracts to be inherited
from. The package does not define any pre-deployed addresses for the owned
contract.

The smallest Release Lockfile for this package looks like this:

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "owned",
 "sources": {
 "./contracts/owned.sol": "ipfs://QmUjYUcX9kLv2FQH8nwc3RLLXtU3Yv5XFpvEjFcAKXB6xD"
 }
}

A Release Lockfile which includes more than the minimum information would look like this.

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "owned",
 "package_meta": {
 "license": "MIT",
 "authors": [
 "Piper Merriam <pipermerriam@gmail.com>"
],
 "description": "Reusable contracts which implement a priviledged 'owner' model for authorization",
 "keywords": [
 "authorization"
],
 "links": {
 "documentation": "ipfs://QmQiqrwqdav5bV8mtv4PqGksGcDWo43f7PAZYwhJqNEv2j"
 }
 },
 "sources": {
 "./contracts/owned.sol": "ipfs://QmUjYUcX9kLv2FQH8nwc3RLLXtU3Yv5XFpvEjFcAKXB6xD"
 }
}

This fully fleshed out Release Lockfile is meant to demonstrate various pieces
of optional data that can be included. However, for the remainder of our
examples we will be using minimalistic lockfiles to keep our examples as
succinct as possible.

 Package with an Inheritable Contract and a Dependency

Now that we’ve seen what a simple package looks like, lets see how to
dependencies are declared.

The next package will implement the transferable pattern and will depend on
our owned package for the authorization mechanism to ensure that only the
contract owner may transfer ownership. The transferable package will
contain a single solidity source file ./contracts/transferable.sol.

pragma solidity ^0.4.0;

import {owned} from "owned/contracts/owned.sol";

contract transferable is owned {
	event OwnerChanged(address indexed prevOwner, address indexed newOwner);

 function transferOwner(address newOwner) public onlyowner returns (bool) {
		OwnerChanged(owner, newOwner);
		owner = newOwner;
		return true;
 }
}

The EPM spec is designed to provide as high a guarantee as possible that builds
are deterministic and reproducable. To ensure that each package you install
gets the exact dependencies it needs, all dependencies are declared as
content addressed URIs. This ensures that when a package manager fetches a
dependency it always gets the right one.

The IPFS URI for the previous owned Release Lockfile turns out to be
ipfs://QmXDf2GP67otcF2gjWUxFt4AzFkfwGiuzfexhGuotGTLJH which is what we will
use in our transferable package to declare the dependency. The Release
Lockfile for our package looks like the following.

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "transferable",
 "sources": {
 "./contracts/transferable.sol": "ipfs://QmZ6Zg1iEejuJ18LFczowe7dyaxXm4KC4xTgnCkqwJZmAp"
 },
 "build_dependencies": {
	"owned": "ipfs://QmXDf2GP67otcF2gjWUxFt4AzFkfwGiuzfexhGuotGTLJH"
 }
}

It will be up to the package management software to determine how the owned
dependency actually gets installed as well as handling any import remappings
necessary to make the import statement work.

 Stand Alone Package with a Reusable Contract

In this next example we’ll look at a package which contains a reusable
contract. This means that the package provides a contract which can be on its
own in some manner. For this example we will be creating a package which
includes a reusable standard
ERC20 [https://github.com/ethereum/EIPs/issues/20] token contract.

The source code for these contracts was pulled from the SingularDTV [https://github.com/ConsenSys/singulardtv-contracts] github repository. Thanks to them for a very well written contract.

This package will contain two solidity source files.

	./contracts/AbstractToken.sol

	./contracts/StandardToken.sol

Given that these source files are relatively large they will not be included
here within the guide but can be found in the
./examples/standard-token/ directory within
this repository.

Since this package includes a contract which may be used as-is, our Release
Lockfile is going to contain additional information from our previous examples,
specifically, the contract_types section. Since we expect people to compile
this contract theirselves we won’t need to include any of the contract
bytecode, but it will be useful to include the contract ABI and Natspec
information. Our lockfile will look something like the following. The
contract ABI and NatSpec sections have been truncated to improve legibility.
The full Release Lockfile can be found
here

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "standard-token",
 "sources": {
 "./contracts/AbstractToken.sol": "ipfs://QmQMXDprXxCunfQjA42LXZtzL6YMP8XTuGDB6AjHzpYHgk",
 "./contracts/StandardToken.sol": "ipfs://QmNLr7DzmiaQvk25C8bADBnh9bF5V3JfbwHS49kyoGGEHz"
 },
 "contract_types": {
 "StandardToken": {
 "abi": [...],
 "natspec": {
 "author": "Stefan George - <stefan.george@consensys.net>",
 "title": "Standard token contract",
 "methods": {
 "allowance(address,address)": {
 "details": "Returns number of allowed tokens for given address.",
 "params": {
 "_owner": "Address of token owner.",
 "_spender": "Address of token spender."
 }
 },
 ...
 }
 }
 }
 }
}

While it is not required to include the contract ABI and NatSpec information,
it does provide those using this package with they data they would need to
interact with an instance of this contract without having to regenerate this
information from source.

 Stand Alone Package with a Deployed Contract

Now that we’ve seen what a package looks like which includes a fully functional
contract that is ready to be deployed, lets explore a package that also
includes a deployed instance of that contract.

Solidity Libraries are an
excellend example of this type of package, so for this example we are going to
write a library for safe math operations called safe-math-lib. This
library will implement functions to allow addition and subtraction without
needing to check for underflow or overflow conditions. Our package will have a
single solidity source file ./contracts/SafeMathLib.sol

pragma solidity ^0.4.0;

/// @title Safe Math Library
/// @author Piper Merriam <pipermerriam@gmail.com>
library SafeMathLib {
 /// @dev Subtracts b from a, throwing an error if the operation would cause an underflow.
 /// @param a The number to be subtracted from
 /// @param b The amount that should be subtracted
 function safeAdd(uint a, uint b) returns (uint) {
 if (a + b > a) {
 return a + b;
 } else {
 throw;
 }
 }

 /// @dev Adds a and b, throwing an error if the operation would cause an overflow.
 /// @param a The first number to add
 /// @param b The second number to add
 function safeSub(uint a, uint b) returns (uint) {
 if (b <= a) {
 return a - b;
 } else {
 throw;
 }
 }
}

This will be our first package which includes the deployments section which is the
location in the Release Lockfile where information about deployed contract
instances is found. Lets look at the Release Lockfile for this package. Some
parts have been truncated for readability but the full file can be found
here

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "safe-math-lib",
 "sources": {
 "./contracts/SafeMathLib.sol": "ipfs://QmVN1p6MmMLYcSq1VTmaSDLC3xWuAUwEFBFtinfzpmtzQG"
 },
 "contract_types": {
 "SafeMathLib": {
 "bytecode": "0x606060405234610000575b60a9806100176000396000f36504062dabbdf050606060405260e060020a6000350463a293d1e88114602e578063e6cb901314604c575b6000565b603a600435602435606a565b60408051918252519081900360200190f35b603a6004356024356088565b60408051918252519081900360200190f35b6000828211602a57508082036081566081565b6000565b5b92915050565b6000828284011115602a57508181016081566081565b6000565b5b9291505056",
 "runtime_bytecode": "0x6504062dabbdf050606060405260e060020a6000350463a293d1e88114602e578063e6cb901314604c575b6000565b603a600435602435606a565b60408051918252519081900360200190f35b603a6004356024356088565b60408051918252519081900360200190f35b6000828211602a57508082036081566081565b6000565b5b92915050565b6000828284011115602a57508181016081566081565b6000565b5b9291505056",
 "abi": [
 ...
],
 "compiler": {
 "type": "solc",
 "version": "0.4.6+commit.2dabbdf0.Darwin.appleclang",
 "settings": {
 "optimize": true
 }
 },
 "natspec": {
 "title": "Safe Math Library",
 "author": "Piper Merriam <pipermerriam@gmail.com>",
 ...
 }
 }
 },
 "deployments": {
 "blockchain://41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d/block/1e96de11320c83cca02e8b9caf3e489497e8e432befe5379f2f08599f8aecede": {
 "SafeMathLib": {
 "contract_type": "SafeMathLib",
 "address": "0x8d2c532d7d211816a2807a411f947b211569b68c",
 "transaction": "0xaceef751507a79c2dee6aa0e9d8f759aa24aab081f6dcf6835d792770541cb2b",
 "block": "0x420cb2b2bd634ef42f9082e1ee87a8d4aeeaf506ea5cdeddaa8ff7cbf911810c"
 }
 }
 }
}

The first thing to point out is that unlike our standard-token contract,
we’ve included the bytecode, runtime_bytecode and compiler information in
the SafeMathLib section of the contract_type definition. This is because
we are also including a deployed instance of this contract and need to require
adequate information for package managers to verify that the contract sound at
the deployed address is in fact from the source code included in this package.

The next thing to look at is the deployments section. The first thing you
should see is the
BIP122 [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki] URI.

blockchain://41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d/block/1e96de11320c83cca02e8b9caf3e489497e8e432befe5379f2f08599f8aecede

This URI defines the chain on which the SafeMathLib library was
deployed. The first hash you see,
41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d is the
genesisi block hash for the Ropsten test network. The later hash
1e96de11320c83cca02e8b9caf3e489497e8e432befe5379f2f08599f8aecede is the block
hash for block numbr 168,238 from the Ropsten chain.

Under that URI there is a single contract instance. It specifies that it’s
contract type is SafeMathLib, the address that the contract instance can
be found at, the transaction hash for the transaction that deployed the
contract, and the block hash in which the deploying transaction was mined.

 Package which uses a Reusable Contract from a depenency

For our next example we’ll be creating a package includes a deployed instance
of a contract type from that comes from a package dependency. This differs
from our previous safe-math-lib example where our deployment is referencing a
local contract from the local contract_types. In this package’s Release
Lockfile we will be referencing a contract_type from one of the
build_dependencies

We are going to use the standard-token package we created earlier and include
a deployed version of the StandardToken contract.

Our package will be called piper-coin and will not contain any source files
since it merely makes use of the contracts from the standard-token package.
The Release Lockfile is listed below with some sections truncated for improved
readability. The full Release Lockfile can be found at
./examples/piper-coin/1.0.0.json

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "piper-coin",
 "deployments": {
 "blockchain://41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d/block/cff59cd4bc7077ae557eb39f84f869a1ea7955d52071bad439f0458383a78780": {
 "PiperCoin": {
 "contract_type": "standard-token:StandardToken",
 "address": "0x11cbb0604e47e0f8501b8f56c1c05f92088dc1b0",
 "transaction": "0x1f8206683e4b1dea1fd2e7299b7606ff27440f33cb994b42b4ecc4b0f83a210f",
 "block": "0xe94a700ef9aa2d7a1b07321838251ea4ade8d4d682121f67899f401433a0d910",
 "bytecode": "...",
 "runtime_bytecode": "...",
 "compiler": {
 "type": "solc",
 "version": "0.4.6+commit.2dabbdf0.Darwin.appleclang"
 }
 }
 }
 },
 "build_dependencies": {
 "standard-token": "ipfs://QmegJYswSDXUJbKWBuTj7AGBY15XceKxnF1o1Vo2VvVPLQ"
 }
}

Most of this should be familiar but it’s worth pointing out how we reference
contract types from dependencies. Under the PiperCoin entry within the
deployments you should see that the contract_type key is set to
standard-token:StandardToken. The first portion represents the name of the
package dependency within the build_dependencies that should be used. The
later portion indicates the contract type that should be used from that
dependencies contract types.

 Stand Alone package with a deployed Library and a contract which Links against that Library

In the previous safe-math-lib package we demonstrated what a package with a
deployed instance of one of it’s local contracts looks like. In this example
we will build on that concept with a package which includes a library and a
contract which uses that library as well as deployed instances of both.

The package will be called escrow and will implementing a simple escrow
contract. The escrow contract will make use of a library to safely send ether.
Both the contract and library will be part of the package found in the
following two solidity source files.

	./contracts/SafeSendLib.sol

	./contracts/Escrow.sol

The full source for these files can be found here:
./examples/escrow/.

The Release Lockfile is listed below with some sections truncated for improved
readability. The full Release Lockfile can be found at
./examples/escrow/1.0.0.json

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "escrow",
 "sources": {
 "./contracts/SafeSendLib.sol": "ipfs://QmcnzhWjaV71qzKntv4burxyix9W2yBA2LrJB4k99tGqkZ",
 "./contracts/Escrow.sol": "ipfs://QmSwmFLT5B5aag485ZWvHmfdC1cU5EFdcqs1oqE5KsxGMw"
 },
 "contract_types": {
 "SafeSendLib": {
 ...
 },
 "Escrow": {
 ...
 }
 },
 "deployments": {
 "blockchain://41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d/block/e76cf1f29a4689f836d941d7ffbad4e4b32035a441a509dc53150c2165f8e90d": {
 "SafeMathLib": {
 "contract_type": "SafeSendLib",
 "address": "0x80d7f7a33e551455a909e1b914c4fd4e6d0074cc",
 "transaction": "0x74561167f360eaa20ea67bd4b4bf99164aabb36b2287061e86137bfa0d35d5fb",
 "block": "0x46554e3cf7b768b1cc1990ad4e2d3a137fe9373c0dda765f4db450cd5fa64102"
 },
 "Escrow": {
 "contract_type": "Escrow",
 "address": "0x35b6b723786fd8bd955b70db794a1f1df56e852f",
 "transaction": "0x905fbbeb6069d8b3c8067d233f58b0196b43da7a20b839f3da41f69c87da2037",
 "block": "0x9b39dcab3d665a51755dedef56e7c858702f5817ce926a0cd8ff3081c5159b7f",
 "link_dependencies": [
 {"offset": 524, "value": "SafeSendLib"},
 {"offset": 824, "value": "SafeSendLib"}
]
 }
 }
 }
}

This Release Lockfile is the first one we’ve seen thus far that include the
link_dependencies section within one of the contract instances. The
runtime_bytecode value for the Escrow contract has been excluded from the
example above for readability, but the full value is as follows (wrapped to 80
characters).

0x606060405260e060020a600035046366d003ac811461003457806367e404ce1461005d57806369
d8957514610086575b610000565b3461000057610041610095565b60408051600160a060020a0390
92168252519081900360200190f35b34610000576100416100a4565b60408051600160a060020a03
9092168252519081900360200190f35b34610000576100936100b3565b005b600154600160a06002
0a031681565b600054600160a060020a031681565b60005433600160a060020a0390811691161415
61014857600154604080516000602091820152815160e260020a6324d048c7028152600160a06002
0a03938416600482015230909316316024840152905173__SafeSendLib_____________________
______92639341231c926044808301939192829003018186803b156100005760325a03f415610000
57506101e2915050565b60015433600160a060020a039081169116141561002f5760008054604080
51602090810193909352805160e260020a6324d048c7028152600160a060020a0392831660048201
52309092163160248301525173__SafeSendLib___________________________92639341231c92
60448082019391829003018186803b156100005760325a03f41561000057506101e2915050565b61
0000565b5b5b56

You can see that the placeholder __SafeSendLib___________________________ is
present in two locations within this bytecode. This is referred to as a link
reference. The entries in the link_dependencies section of a contract
instance describe how these link references should be filled in.

The offset value specifies the number of characters into the unprefixed
bytecode where the replacement should begin. The value defines what address
should be used to replace the link reference. In this case, the value is
referencing the SafeSendLib contract instance from this release lockfile.

 Package with a contract with link dependencies on a contract from a package dependency

Now that we’ve seen how we can handle linking dependencies that rely on
deployed contract instances from the local package we’ll explore an example
with link dependencies that rely on contracts from the package dependencies.

In this example we’ll be writing the wallet package which includes a wallet
contract which makes use of the previous safe-math-lib package. We will also
make use of the owned package from our very first example to handle
authorization. Our package will contain a single solidity source file
./contracts/Wallet.sol. The
version below has been trimmed for readability.

import {SafeMathLib} from "safe-math-lib/contracts/SafeMathLib.sol";
import {owned} from "owned/contracts/owned.sol";

contract Wallet is owned {
 using SafeMathLib for uint;

 mapping (address => uint) allowances;

 function() {
 }

 function send(address recipient, uint value) public onlyowner {
 recipient.send(value);
 }

 function approve(address recipient, uint value) public onlyowner {
 allowances[recipient] = value;
 }

 function withdraw(uint value) public {
 allowances[msg.sender] = allowances[msg.sender].safeSub(value);
 if (!msg.sender.send(value)) throw;
 }
}

The Release Lockfile for our wallet package can been seen below. It has been
trimmed to improve readability. The full Release Lockfile can be found at
./examples/wallet/1.0.0.json

{
 "lockfile_version": "1",
 "version": "1.0.0",
 "package_name": "wallet",
 "sources": {
 "./contracts/Wallet.sol": "ipfs://QmYKibsXPSTR5UjywQHX8SM4za1K3QHadtFGWmZqGA4uE9"
 },
 "contract_types": {
 "Wallet": {
 "bytecode": "...",
 "runtime_bytecode": "...",
 ...
 }
 },
 "deployments": {
 "blockchain://41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d/block/3ececfa0e03bce2d348279316100913c42ca2dcd51b8bc8d2d87ef2dc6a479ff": {
 "Wallet": {
 "contract_type": "Wallet",
 "address": "0xcd0f8d7dab6c682d3726693ef3c7aaacc6431d1c",
 "transaction": "0x5c113857925ae0d866341513bb0732cd799ebc1c18fcec253bbc41d2a029acd4",
 "block": "0xccd130623ad3b25a357ead2ecfd22d38756b2e6ac09b77a37bd0ecdf16249765",
 "link_dependencies": [
 {"offset": 678, "value": "safe-math-lib:SafeMathLib"}
]
 }
 }
 },
 "build_dependencies": {
 "owned": "ipfs://QmXDf2GP67otcF2gjWUxFt4AzFkfwGiuzfexhGuotGTLJH",
 "safe-math-lib": "ipfs://QmfUwis9K2SLwnUh62PDb929JzU5J2aFKd4kS1YErYajdq"
 }
}

Just like our previous example, the runtime_bytecode has been omitted for
improved readability, but the full value is as follows (wrapped to 80
characters).

0x606060405236156100355760e060020a6000350463095ea7b381146100435780632e1a7d4d1461
006a578063d0679d341461008e575b34610000576100415b5b565b005b3461000057610056600435
6024356100b5565b604080519115158252519081900360200190f35b346100005761005660043561
00f8565b604080519115158252519081900360200190f35b34610000576100566004356024356101
da565b604080519115158252519081900360200190f35b6000805433600160a060020a0390811691
16146100d157610000565b50600160a060020a038216600090815260016020819052604090912082
90555b5b92915050565b600160a060020a0333166000908152600160209081526040808320548151
830184905281517fa293d1e800
8152600481019190915260248101859052905173__SafeMathLib___________________________
9263a293d1e89260448082019391829003018186803b156100005760325a03f41561000057505060
4080518051600160a060020a0333166000818152600160205293842091909155925084156108fc02
91859190818181858888f1935050505015156101d157610000565b5060015b919050565b60008054
33600160a060020a039081169116146101f657610000565b604051600160a060020a038416908315
6108fc029084906000818181858888f19450505050505b5b9291505056

As you can see, this bytecode contains a link reference to the SafeMathLib
library from the safe-math-lib package dependency. If you look in the
link_dependencies section of our Wallet contract you’ll see it’s items are
similar to the ones from our previous example.

"link_dependencies": [
 {"offset": 678, "value": "safe-math-lib:SafeMathLib"}
]

However, unlike the previous example which linked against a local contract
type, value portion is prefixed with the name of the package which contains
the address of the contract instance that this should be linked against.

Release Lockfile Specification

This document defines the specification for the Release Lockfile. The
release lockfile provides metadata about the package and in most cases should
provide sufficient information about the packaged contracts and its
dependencies to do bytecode verification of its contracts.

Guiding Principles

The release lockfile specification makes the following assumptions about the
document lifecycle.

	Release lockfiles are intended to be generated programatically by package management software as part of the release process.

	Release lockfiles will be consumed by package managers during tasks like installing package dependencies or building and deploying new releases.

	Release lockfiles will typically not be stored alongside the source, but rather by package registries or referenced by package registries and stored in something akin to IPFS.

Keywords

RFC2119

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119.

	https://www.ietf.org/rfc/rfc2119.txt

Custom

Prefixed vs Unprefixed

A prefixed hexidecimal value begins with '0x'. Unprefixed values have no
prefix. Unless otherwise specified, all hexidecimal values should be
represented with the '0x' prefix.

	Prefixed: 0xdeadbeef

	Unprefixed: deadbeef

Bytecode

The set of EVM instructions as produced by a compiler. Unless otherwise
specified this should be assumed to be hexidecimal encoded and prefixed with a
'0x'.

Unlinked Bytecode

Unlinked bytecode is the hexidecimal representation of a contract’s EVM
instructions which contains placeholders which are referred to as link
references.

	Unlinked Bytecode: 606060405260e0600073__MathLib_______________________________634d536f

Linked Bytecode

Linked bytecode is the hexidecimal representation of a contract’s EVM instructions which has hadd all link references replaced with the desired link values

	linked Bytecode: 606060405260e06000736fe36000604051602001526040518160e060020a634d536f

Link Reference

A placeholder within the hexidecimal representation of a contract’s EVM instructions.

606060405260e0600073__MathLib_______________________________634d536f the

In the bytecode
606060405260e0600073__MathLib_______________________________634d536f, the
substring __MathLib_______________________________ is a link reference.

Link Value

A link value is the value which can be inserted in place of a link reference.

Linking

The act of replacing link references within some bytecode with link values.

Contract Type

This term is used to refer to a specific contract in the package source. This
term can be used to refer to an abstract contract, a normal contract, or a
library. Two contracts are of the same contract type if they have the same
bytecode.

Example:

contract Wallet {
 ...
}

A deployed instance of the Wallet contract would be of of type Wallet.

Contract Name

The name found in the source code which defines a specific contract type.
These names must conform to the regular expression
[a-zA-Z][-a-zA-Z0-9_]*.

There can be multiple contracts with the same contract name in
a projects source files.

Contract Alias

This is a name used to reference a specific contract type. Contract
aliases must be unique within a single release lockfile.

The contract alias must use one of the following naming schemes.

	<contract-name>

	<contract-name>[<identifier>]

The <contract-name> portion must be the same as the contract name for
this contract type.

The [<identifier>] portion must match the regular expression
\[[-a-zA-Z0-9]{1,256}\].

Contract Instance

A contract instance a specific deployed version of a contract type. All
contract instances have an address on some specific chain.

Contract Instance Name

A name which refers to a specific contract instance on a specific chain from
the deployments of a single release lockfile. This name must be unique
across all other contract instances for the given chain. The name must
conform to the regular expression [a-zA-Z][a-zA-Z0-9_]*.

In cases where there is a single deployed instance of a given contract type
package managers should use the contract alias for that contract type
for this name.

In cases where there are multiple deployed instances of a given contract type
package managers should use a name which provides some added semantic
information as to help differentiate the two deployed instances in a meaningful
way.

Format

The canonical format for the release lockfile is a JSON document containing a
single JSON object.

Document Specification

The following fields are defined for the release lockfile. Custom fields may
be included. Custom fields should be prefixed with x- to prevent name
collisions with future versions of the specification.

Lock File Version: lockfile_version

The lockfile_version field defines the specification version that this
document conforms to. Release lockfiles must include this field.

	Required: Yes

	Key: lockfile_version

	Type: String

	Allowed Values: 1

Package Name: package_name

The package_name field defines a human readable name for this package.
Release lockfiles must include this field. Package names must
begin with a lowercase letter and be comprised of only lowercase letters,
numeric characters, and the dash character '-'. Package names must not
exceed 214 characters in length.

	Required: Yes

	Key: package_name

	Type: String

	Format: Package names must conform to the following regular expression. [a-z][-a-z0-9]{0,213}

Package Meta: meta

The meta field defines a location for metadata about the package
which is not integral in nature for package installation, but may be important
or convenient to have on-hand for other reasons. This field should be
included in all release lockfiles.

	Required: No

	Key: meta

	Type: Object (String: Package Meta object)

Version: version

The version field declares the version number of this release. This value
must be included in all release lockfiles. This value should be conform
to the semver [http://semver.org/] version numbering specification.

	Required: Yes

	Key: version

	Type: String

Sources: sources

The sources field defines a source tree that should comprise the full
source tree necessary to recompile the contracts contained in this release.
Sources are declared in a key/value mapping.

	Keys must be relative filesystem paths beginning with a ./. Paths must resolve to a path that is within the current working directory.

	Values must conform to one of the following formats.

	Source string.

	When the value is a source string the key should be interpreted as a file path.

	IPFS URI

	If the resulting document is a directory the key should be interpreted as a directory path.

	If the resulting document is a file the key should be interpreted as a file path.

	Key: sources

	Type: Object (String: String)

Contract Types: contract_types

The contract_types field holds the contract types which have been included
in this release. Release lockfiles should only include contract types
which can be found in the source files for this package. Release lockfiles
should not include contract types from dependencies.

	Key: contract_types

	Type: Object (String: Contract Type Object)

	Format:

	Keys must be valid contract aliases.

	Values must conform to the Contract Type object definition.

Packages should not include abstract contracts in the contract types
section of a release.

Deployments: deployments

The deployments field holds the information for the chains on which this
release has contract instances as well as the contract types and other
deployment details for those deployed contract instances. The set of chains
defined by the BIP122 URI keys for this object must be unique.

	Key: deployments

	Type: Object (String: Object(String: Contract Instance Object))

	Format:

	Keys must be valid BIP122 URI chain definitions.

	Values must be objects which conform to the format:

	Keys must be valid contract instance names.

	Values must be valid Contract Instance objects.

Build Dependencies: build_dependencies

The build_dependencies field defines a key/value mapping of ethereum packages that
this project depends on.

	Key: dependencies

	Type: Object (String: String)

	Format:

	Keys must be valid package names matching the regular expression [a-z][-a-z0-9]{0,213}

	Values must be valid IPFS URIs which resolve to a valid Release Lock File

Object Definitions

Definitions for different objects used within the release lockfile. All
objects allow custom fields to be included. Custom fields should be
prefixed with x- to prevent name collisions with future versions of the
specification.

The Package Meta Object

The Package Meta object is defined to have the following key/value pairs.

Authors: authors

The authors field defines a list of human readable names for the authors of
this package. Release lockfiles may include this field.

	Required: No

	Key: authors

	Type: List of Strings

License: license

The license field declares the license under which this package is released.
This value should be conform to the
SPDX [https://en.wikipedia.org/wiki/Software_Package_Data_Exchange] format.
Release lockfiles should include this field.

	Required: No

	Key: license

	Type: String

Description: description

The description field provides additional detail that may be relevant for the
package. Release lockfiles may include this field.

	Required: No

	Key: description

	Type: String

Keywords: keywords

The keywords field provides relevant keywords related to this package.

	Required: No

	Key: keywords

	Type: List of Strings

Links: links

The links field provides URIs to relevant resources
associated with this package. When possible, authors should use the
following keys for the following common resources.

	website: Primary website for the package.

	documentation: Package Documentation

	repository: Location of the project source code.

	Key: links

	Type: Object (String: String)

The Contract Type Object

A Contract Type object is defined to have the following key/value pairs.

Contract Name contract_name

The contract_name field defines contract name for this contract type.

	Required: If the contract name and contract alias are not the same.

	Type: String

	Format: must match the regular expression [a-zA-Z][a-zA-Z0-9_]*

Bytecode bytecode

The bytecode field defines the unlinked '0x' prefixed bytecode for this contract type

	Required: No

	Type: String

	Format: Hex encoded unlinked bytecode for the compiled contract.

Runtime Bytecode runtime_bytecode

The runtime_bytecode field defines the unlinked '0x' prefixed runtime
portion of bytecode for this contract type.

	Required: No

	Type: String

	Format: Hex encoded unlinked runtime portion of the bytecode for the compiled contract.

ABI abi

	Required: No

	Type: List

	Format: see https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#json

Natspec natspec

	Required: No

	Type: Object

	Format: The Merged UserDoc and DevDoc

	UserDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#user-documentation]

	DevDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#developer-documentation]

Compiler compiler

	Required: No

	Type: Object

	Format: must conform the the Compiler Information object format.

The Contract Instance Object

A Contract Instance object is defined to have the following key/value pairs.

Contract Type contract_type

The contract_type field defines the contract type for this contract
instance. This can reference any of the contract types included in this
release lockfile or any of the contract types found in any of the package
dependencies from the build_dependencies section of the release lockfile.

	Required: Yes

	Type: String

	Format: must conform to one of the following formats

To reference a contract type from this release lockfile, use the format <contract-alias>.

	The <contract-alias> value must be a valid contract alias.

	The value must be present in the keys of the contract_types section of this release lockfile.

To reference a contract type from a dependency, use the format <package-name>:<contract-alias>.

	The <package-name> value must be present in the keys of the build_dependencies of this release lockfile.

	The <contract-alias> value must be be a valid contract alias

	The resolved release lockfile for <package-name> must contain the <contract-alias> value in the keys of the contract_types section.

Address address

The address field defines the address of the contract instance

	Required: Yes

	Type: String

	Format: Hex encoded '0x' prefixed ethereum address matching the regular expression 0x[0-9a-fA-F]{40}.

Transaction transaction

The transaction field defines the transaction hash in which this contract
instance was created.

	Required: No

	Type: String

	Format: 0x prefixed hex encoded transaction hash.

Block block

The block field defines the block hash in which this the transaction which
created this contract instance was mined.

	Required: No

	Type: String

	Format: 0x prefixed hex encoded block hash.

Runtime Bytecode runtime_bytecode

The runtime_bytecode field defines the unlinked '0x' prefixed runtime
portion of bytecode for this contract instance. When present, the value from
this field takes priority over the runtime_bytecode from the
contract_type for this contract instance.

	Required: No

	Type: String

	Format: Hex encoded unlinked runtime portion of the bytecode for the compiled contract.

Compiler compiler

The compiler field defines the compiler information that was used during
compilation of this contract class. This field should be present in all
contract types which include bytecode or runtime_bytecode.

	Required: No

	Type: Object

	Format: must conform the the Compiler Information object format.

Link Dependencies link_dependencies

The link_dependencies defines the values which were used to fill in any
link references which are present in the runtime_bytecode for this
contract instance. This field must be present if there are any link
references in the runtime_bytecode for this contract instance. This field
must contain an entry for all link references found the runtime_bytecode.

	Required: If there are any link references in the runtime_bytecode for the contract type of this contract instance.

	Type: Array

	Format: All values must be valid Link Value objects

The Link Value Object

A Link Value object is defined to have the following key/value pairs.

Offset offset

The offset field defines the location within the corresponding bytecode where
the value for this link value should be written. This location is a
0-indexed offset from the beginning of the unprefixed hexidecimal
representation of the bytecode.

	Required: Yes

	Type: Integer

	Format: The integer must conform to all of the following:

	be greater than or equal to zero

	strictly less than the length of the unprefixed hexidecimal representation of the corresponding bytecode.

Value value

The value field defines the value which should be written when linking the
corresponding bytecode.

	Required: Yes

	Type: String

	Format: One of the following formats.

To reference address of a contract instance from the current release lockfile
the value should be set to the name of that contract instance.

	This value must be a valid contract instance name.

	The chain definition under which the contract instance that this link value belongs to must contain this value within its keys.

	This value may not reference the same contract instance that this link value belongs to.

To reference an address of a *contract instance from one of the dependencies of
this release lockfile the value should be in the format
<package-name>:<contract-instance>.

	The <package-name> value must be present in the build_dependencies for this release lockfile.

	The <contract-instance> value must be a valid contract instance name.

	Within the release lockfile of the package dependency defined by <package-name> value all of the following must be satisfiable:

	There must be exactly one chain defined under the deployments key which matches the chain definition that this link value is nested under.

	The <contract-instance> value must be present in the keys of the matching chain.

A static address can be used by simply using the '0x' prefixed address as the
value. Package managers should not use this pattern when building releases
that will be published as open source packages or that are intended to be used
outside of a closed system. Package managers should require some form of
explicit input from the user such as a command line flag like
--allow-unverifiable-linking before linking code with this type of link
value.

The Compiler Information Object

The compiler field defines the compiler information that was used during
compilation of this contract instance. This field should be present in all
contract instances which locally declare runtime_bytecode.

A Compiler Information object is defined to have the following key/value pairs.

Type type

The type field defines which compiler was used in compilation.

	Required: Yes

	Key: type:

	Type: String

	Allowed Values:

	'solc' for the solc command line compiler.

	'solcjs' for the nodejs solc compiler.

Version version

The version field defines the version of the compiler.

	Required: Yes

	Key version:

	Type: String

Settings settings

The settings field defines any settings or configuration that was used in
compilation.

	Required: No

	Key settings:

	Type: Object

	Format: Depends on the type of the compiler. See below:

For the 'solc' and 'solcjs' compilers, the settings value must conform to
the following format.

	Keys:

	optimize

	Required: No

	Type: Boolean

	optimize_runs

	Required: No

	Type: Integer

	Format: Greater than or equal to 1.

BIP122 URIs

BIP122 URIs are used to define a blockchain via a subset of the
BIP-122 [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki] spec.

blockchain://<genesis_hash>/block/<latest confirmed block hash>

The <genesis hash> represents the blockhash of the first block on the chain,
and <latest confirmed block hash> represents the hash of the latest block
that’s been reliably confirmed (package managers should be free to choose their
desired level of confirmations).

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

